
Secrets
to Automation
Success

A White Paper by Paul Merrill, Consultant and Trainer at Beaufort Fairmont, LLC

5

5 Secrets to Automated Testing Success 2

Practice Exceptional Leadership
If you’re leading an automated testing effort, what exactly do you want to achieve? Have you or your
manager defined your goals? If not, you will not and cannot succeed. Goals must predate means.

In any field, good leaders must understand their objectives, communicate them clearly, and work
with others to achieve the objective. This preparation is particularly crucial for successful automated
testing. Vaguely defined goals such as “automating as much as possible” are not attainable. Instead,
an effective leader might create a goal of “95% code coverage by December 31st.” Define success by
setting a clear target for your automation effort.

You will encounter obstacles along the way to your objective – that’s expected. A good leader
prepares her team to meet and conquer them. Your automation tool may fail to accomplish a critical
goal. There may be some misunderstanding between what the salesperson told you and what you
find the tool can actually do. How are you going to handle that? Are you prepared? Do you have the
expertise and skill-set to overcome the challenges that will arise in the course of your project?

A good leader staffs her team to overcome obstacles.

Expect a High Return

What is a good return? I had this question too. In order to find an
answer, I analyzed a number of projects that I had been involved with
over the last decade that used test automation. I wanted to gain insight
into what the key metrics in an automation effort were and how they
related to project success or failure.

The primary justification most managers use for an automation effort is saving labor. I determined the
labor costs (Cost of Investment) for these projects by talking with recruiting agencies that specialize
in recruiting these skill-sets locally. Additionally, I needed to understand the Gain from the Investment.
There are several ways a person could determine this, but in this case, I was looking for the amount of
testing time the company gained by pursuing automation.

Each test case does work that a human would otherwise do. I took the amount of time a human would
take to do the work and multiplied it by the number of tests cases. Each type of test case had a
different average amount of work it would take a human to do, so that was considered.

So the total amount of labor hours generated each time the automated test suite ran times multiplied
by the number of times the suites ran over the course of the project was the gain.

Knowing these two factors, I was able to calculate the Return on Investment (ROI).

Secret

#1

ROI =
(Gain from Investment - Cost of Investment)

Cost of Investment

For every dollar
invested in labor, the
client got back $8.32.

5 Secrets to Automated Testing Success 3

Return on Investment gives us a good understanding of how each invested dollar pays off.

Of the projects I analyzed, I decided to take the most successful and the least successful projects to
use as reference points in this discussion. Once again, these are real projects that intended to use
automation to improve the efficiency of their testing efforts.

Project A

Copyright Beaufort Fairmont, LLC 2012. All rights reserved.

ROI is calculated as a ratio. On Project A ROI was -0.97. Yes, that’s negative. That means that for
every dollar invested in the project, 97 cents were thrown away.

$250,000

$200,000

$150,000

$100,000

$50,000

$0

Month 1

Month 2

Month 3

Month 4

Month 5

Month 6

Month 7

Month 8

Month 9

Month 10

Cost of Investment

Gain from Investment

5 Secrets to Automated Testing Success 4

Project B

Copyright Beaufort Fairmont, LLC 2012. All rights reserved.

Project B was quite different. For every dollar invested in labor, the client got back $8.32.

Notice the amount of labor was not all that different in these two projects. After 10 months, Project A
was estimated to be at $231k and Project B was at $228k. The gains on the two projects, however, are
significantly different. I’ll talk more about these projects and what made Project B so successful as I
reveal the other four secrets.

Speed of Return

An investment on automated testing should begin to pay off immediately. Waiting six months for
someone to “create a framework” is foolish -- time invested in automation should pay off in weeks, not
months.

You don’t need to spend hundreds of thousands of dollars on software applications for a popular brand
or attractive interface. You need immediate results. Good leadership will drive this. Good leadership
will understand and create attainable goals, set high standards, and help the team accomplish goals
effectively.

$7,000,000

$6,000,000

$5,000,000

$4,000,000

$3,000,000

$2,000,000

$1,000,000

$0

Month 1

Month 2

Month 3

Month 4

Month 5

Month 6

Month 7

Month 8

Month 9

Month 10

Month 11

Month 12

Month 13

Month 14

Month 15

Month 16

Month 17

Month 18

Month 19

Month 20

Month 21

Month 22

Gain from Investment

Cost of Investment

5 Secrets to Automated Testing Success 5

Setting a target ROI

After studying the reference projects above, I found several milestones
that appear to be constant.

Milestones:
• Average 6-7 test cases/day per person
• After three months, the value of daily test runs must be equal to or greater than the daily effort to

create test cases
• Nightly runs start in week one or two

As I discuss the next four secrets, I’ll refer back to these reference projects and illuminate why these
milestones are accurate, constant, and will work for your project.

Educate Your Testers
How do you make the gains we’ve examined? In Project A, automation failed to pay for itself.
Instead, it cost hundreds of thousands of dollars in spite of many measures the company took to
ensure success, such as:

• Hire only testers with experience in automation
• Purchasing training from the vendor of the tool they were using
• Investing months into building an automation framework

So why did it fail?

Project A failed for many reasons, but one of the biggest was education. In most cases, those who
learn automated testing learn it on the job with little or no programming experience. Most people
who attempt automation have implemented one or two systems. Few have built systems from the
ground up, architected the infrastructure and framework from nothing. Many have witnessed and
used systems that work. But as Sophocles said, “One must learn by doing the thing; for though you
think you know it, you have no certainty, until you try.” That’s where Beaufort Fairmont’s experience
and expertise are second to none.

Often, managers of QA projects have not managed the construction phase of the development
effort – which is very different from what is normally, a later/reactive testing cycle. This was the case
in Project A. The manager had no hands-on Software Engineering experience and no experience
leading a development effort.

Often, managers use automated testing as a place to put the people in their team that want to
program but don’t have the experience or skill necessary to join the development effort. It’s an easy
choice because the promise of automation is so heavenly.

Secret

#2

Each tester should
create an average of
6-7 test cases per day.

5 Secrets to Automated Testing Success 6

If we’re serious about automation, however, we should look at it as a product in and of itself – with as
much value add for the company as the customer-facing product or service. And when this is the
case, that the automation effort is as important a project as development of a production system,
why would we put people without development experience and formal education in charge of the
technical leadership of these efforts? Why do we plan them or resource them any differently from a
normal development effort?

Automation efforts are as important and complicated as producing
commercially viable software. Hiring above-average software
engineers to develop these projects is also a difficult task. So where
does this leave us?

Educating Existing QA Engineers and Automated Testers.

I mentioned that in Project A the company paid for training from the software vendor. The
training, however, was specific to the tool. It was training on how to use the tool – not principles of
automation. And it cost tens of thousands of dollars!

Beaufort Fairmont offers a 3-day class for QA Engineers and Automated testers. The course is
called “Automated Testing”. This course is for QA Engineers with or without Automation experience.
It is not about a specific tool, it is about the principles of automated testing. It covers how to choose
a tool for a specific assignment, how to evaluate testing products and an overview of several
software automation tools on the market.

We do hands-on work to learn a number of patterns and best practices in implementing testing
frameworks, test suites and test cases. We cover continuous integration, TDD and ATDD. We even
touch on JUnit and TDD as a mechanism to expand our skill-set.

This is a one-of-a-kind offering. You won’t find it anywhere else. Check the Beaufort Fairmont web
site (beaufortfairmont.com) for details.

Practice TDD, ATTD, and CI

Test Driven Development was originally created by developers to ensure the code they wrote did
what customers requested. It was created in the SmallTalk community and made famous by Kent
Beck with his “Test Infected” junit.org site. If you want an introduction to junit and TDD, junit.org is
the place to go.

Test Driven Development (or TDD) uses a very simple pattern:

• Write a Failing Test
• Make the Test Pass
• Reduce Duplication

Secret

#3

Beaufort Fairmont offers
a 3-day class called
Automated Testing.

http://www.beaufortfairmont.com
http://www.beaufortfairmont.com
http://www.beaufortfairmont.com
http://www.beaufortfairmont.com

5 Secrets to Automated Testing Success 7

Note that this pattern forces the developer to write a test before writing the code. For many people,
this concept can be difficult to understand. How can you write a test case before writing the code?

This strategy is not only possible, but offers many advantages. Coders become more focused, code
gets written faster, has fewer defects, actual defects are easier to find, and unit tests are not forgotten,
because you can’t write any code without a failing test.

The major return from practicing TDD is that developers’ feedback loop is tightened. They gain
instant feedback from every thing they do in the code, and can know at all times whether they have
broken the code or not.

TDD generally doesn’t cover all test cases. It covers very specific test cases within specific sub-
systems or classes.

The Course

Beaufort Fairmont offers a 3-day course in TDD. This course teaches students how to practice TDD
in hands-on examples. It gives students the opportunity to face real-life issues all programmers will
face with TDD in a safe and coached environment. The course also encompasses mock objects and
patterns for TDD. Furthermore, students will learn about implementing TDD in Legacy codebases
and techniques for doing so.

TDD for Testers

I break up testing in to 3 levels:

• Unit Tests
• Integration Tests
• Acceptance Tests

Unit Tests

Normally, TDD is practiced at the unit level by developers. The tests are tightly coupled to the code.
This is white-box testing, where the test code has intimate knowledge of the code under test.

Integration Tests

Teams can practice TDD at the Integration Test level as well. When test teams use good tools and
have the technical support they need, they can test production code before a user interface is
developed.

UNIT TESTS

INTEGRATION
TESTS

ACCEPTANCE
TESTS

5 Secrets to Automated Testing Success 8

How is that? Many times, engineers feel they are limited to testing only what they can see and
touch – systems with user interfaces. But when teams learn to interface with a subsystem before
and during implementation, we add another layer of feedback and early detection of defects. This is
another good reason to have your testers attend the Beaufort Fairmont’s Automated Testing Training
course.

TDD at the unit level will not catch everything. When classes or modules are composed into
subsystems, we use integration tests (white box tests) to test the integration of those classes or
modules.

Every sub-system has an input and an output, although they are not always clearly defined. Often,
testers must work with development to negotiate clear inputs and outputs to the sub-system for
testing. Good code is tested code. We’ll do whatever we need to ensure a high-quality product. If
it means adding a mechanism for tests to interact with the subsystem, that’s what we’ll do.

Acceptance Tests

Acceptance tests are all about the customer.

When a customer sees the results of unit tests, he should be able to
ascertain the purpose of many of the tests by their name and organization.
This is because while many of the test cases will be clear user-related
functions, many will not. Unit tests will cover boundary conditions that most
end-users and customers will never (and should never) have to consider.

When a customer sees the results of integration tests, he should be able to determine most if not
all of what the test cases do simply by their names. Acceptance tests, on the other hand, are the
domain of the end user. While it is likely that testers will write these tests, the end user is the person
who determines what they should do and how the tested system should react.

Like TDD, acceptance testing doesn’t have to wait until code is complete to be created.
Acceptance Test Driven Development (or ATDD) is the practice of creating acceptance tests or
tests which will only pass if acceptance criteria is met, prior to integrating the code into the system.
Acceptance tests fail until the code under test meets acceptance criteria.

In our AT course, we offer hands-on examples of ATDD and teach the best practices and design
principles associated with the practice of ATDD.

Continuous Integration

CI is the practice of developers integrating their code daily (if not more often) into the full code base.
All levels of tests are run automatically. At minimum, test suites are run nightly. Many tests are run
locally on dev machines before check-in. Many tests are run after every check-in.

Continuous integration depends on being able to build and deploy your product or service with the
push of a button.

Acceptance tests are
all about the customer.

5 Secrets to Automated Testing Success 9

Applications like Jenkins, Hudson and Continuum allow you to set up automatic builds followed by
test cases running automatically. Users are notified by email if a build breaks or test case fails.

This type of feedback ensures that you have a working codebase at all points in time. It is absolutely
key to implementing automation successfully.

Select the Proper Tool
Selecting the proper tool for your team is one of the most important
keys to successful test automation. There are many tools out there,
and many support and training options available for these tools, but the
factors involved in choosing a tool are similar for each team.

Beaufort Fairmont has worked with many tools in the automation testing space, and we understand
both their benefits and costs. We have the skills to sit down with your team and help make a non-
biased decision with you. Further, if you pick a solution from the open-source space, we offer
support contracts for many of these tools.

The choice of an automation tool can be daunting. We’re here to help.

The main factors involved are:

3 Maintenance of test cases
3 Integration with Continuous Integration Server
3 Speed of writing tests
3 Ability to refactor test cases into reusable code
3 Integration with source code control
3 Budget

One thing you don’t see listed is integration with an existing defect system. Many managers believe
this is the most import feature a system can have. In fact, most of the reasons managers want this
are invalid and harm the development model.

For instance, one manager thought it would great if failed test cases created defects in the defect
system. Sounds great, right? But what happens when every test fails one night because of a small
error a developer introduced? Your defect system is flooded with defects that don’t help anyone!

Is it helpful to know that the system broke last night? Absolutely. But the cost of adding hundreds
or thousands of defects to a defect system is too high. Unless, of course, you want to make
development look bad, and then you have other problems. See Secret #1.

Other teams think they want test cases persisted in a defect system in addition to the test system.
This duplication generally leads to confusion. In my experience, there’s rarely a need for this.

Secret

#4 We’re here to help.

3 Available Training
3 Available Support
3 Persisting results
3 Visibility of results
3 Available Metrics

5 Secrets to Automated Testing Success 10

Most of the time, features like these are requested by managers who need a way to report on
their team’s metrics. When that is the objective, there are other ways to accomplish it rather than
implementing purchasing features to duplicate test cases and automatically flood defect systems
with unnecessary noise.

In other words, these are not key features in testing systems. Which is why I don’t list them above.

Design Test Cases Effectively
If we’re writing automated tests, what do we need to do in order to succeed?

• Test cases that are readable by human beings
• Test case names that define (succinctly) what they do
• Test cases that fail for one and only one reason
• Test cases organized from the perspective of reporting
• Repeated test case code is extracted
• Repeated literals are extracted

Several of these may seem obvious, but you may find others less so.

Readability

One cost that is rarely accounted for in automated testing is the learning curve of an individual who
wants to read a test case.

Perhaps a Business Analyst wants to see if the dev team has created a test for a certain situation.
Perhaps a manager wants to investigate why a build failed. Perhaps you have a new tester writing
automated tests for the first time, or a developer wants to see what a test case is doing. How long
does it take that individual to read and understand a test case?

Reading a test case should be like reading one’s native language. Make test cases readable,
and make them look like a story. Test cases don’t need lots of comments in the code, but they
need keywords and methods that signify their function. This has the added benefit of helping you
understand what you did in a year’s time.

Naming Test Cases

A test case should fail for one and only one reason. Why is this important?

We create automated tests for a number of reasons. One reason is to replace human labor with
computer labor. Too often, we think of that as the only reason. Another reason is to provide a clear
assessment of what works in the system and what doesn’t work in the system at any given time.

Secret

#5

Make test cases
readable, make them
look like a story.

5 Secrets to Automated Testing Success 11

The faster a project team understands what’s working and what isn’t, the faster we’re able to isolate
a defect and fix it.

The clearer and more succinct we make the name of a test case, the easier it is to see which part
of the system broke in the last test. It’s much quicker to look at a report and know by the name of
the test case what failed than it is to look at a test case number (for instance) and then have to look
through the test to understand what it does.

This can save hours per day in understanding what worked and what
didn’t in a test run.

Fail for One and Only One Reason

This is one of the biggest reasons for failure I’ve seen in automated testing.
For some reason, we think that we need to verify each step in a test case.
Well, that’s simply not true.

We don’t like to do the same thing over and over. We know that when we go through a set of actions
in the system under test, we should go ahead and check to make sure that each action works
properly, because it saves time.

Computers, however, don’t care about doing the same thing over and over again. (In fact, I believe
they like it! It’s a task at which they excel.) Instead of adding 20 verification points to one automated
test, break that test up into 20 test cases. Make the repeated parts of the test cases reusable, and
have one verification point in each test case.

In many cases, what you’ll find is that you weren’t testing all cases with the original 20 verification
points to begin with. Sometimes, you’ll need to go back and create multiple cases for each of the 20
new test cases.

When your test cases have one verification point, or one reason to fail, you’ll see that it’s much easier
to name your tests. Additionally, it’s much easier to understand them, organize them, report on them,
and give and get feedback on them.

Finally, if you’re not yet convinced, think of what happens when you’ve looked at a test case with 20
verification points. You’re hard-pressed to know why the test even exists or what purpose it serves!

Organize Tests from a Reporting Perspective

If your team isn’t using continuous integration, you’re missing the boat on automation. You should
be able to sleep at night knowing your test cases are running and your system under test will have a
reliable status in the morning.

Part of most continuous integration systems is reporting on tests that fail. Your project team needs the
ability to scan reports and know in minutes where in the system a defect resides (or doesn’t reside). If
your tests are organized in such a way that reporting is easy to look at and understand, your team will
save a large amount of time looking into defects that were produced in the last 24 hours.

Make the repeated
parts of the test case
reuseable.

5 Secrets to Automated Testing Success 12

Reuse Repeated Test Code

As we discussed in Secret #4, you want to select a tool that allows you to reuse your test code.
Maybe it allows you to create keywords, maybe its methods or functions or modules…regardless,
the ability to reuse test code is a fundamental characteristic of a good testing tool.

Why? Because one of the biggest costs or benefits to your automation effort will be maintenance of
test cases. Maintenance will be reduced if you can look at test code and make a change or a fix in
one place as opposed to multiple spots in the code.

This is also one of the reasons traditional “record and playback” tools don’t work well. In order to
reuse repeated code and to reduce maintenance of test cases, you have to stop using record and
playback.

So whenever you find code that looks similar, make it the same by introducing variables, and
creating a function, method, or keyword with those variables as parameters.

But bear in mind: as with test case names, keywords, functions, or methods are more easily used,
and more easily read when they are succinct and clearly named. The same goes with introducing
variables into test code.

Closing
These are the Five Secrets of Successful Automated
Testing. If you implement them, you will be five steps
closer to success in your projects!

These are just five of the secrets I’ve learned over
my career in software development. As much as
I’d like to, it’s impossible to summarize the lessons
of an entire career in one whitepaper. That’s why
I’ve created multi-day courses for you and your
teams. Check back at beaufortfairmont.com for more
information on courses in your area. Each of these
courses can be customized for your team, your needs,
and your location.

Beaufort Fairmont is also available for consulting engagements and player-coach engagements.
Contact us today at sales@beaufortfairmont.com or 1.888.385.4851. We look forward to hearing
from you and learning about your projects!

The 5 Secrets to Automated
Testing Success
Secret #1: Practice Exceptional Leadership
Secret #2: Educate Your Testers
Secret #3: Practice TDD, ATTD, and CI
Secret #4: Select the Proper Tool
Secret #5: Design Test Cases Effectively

Copyright © 2012 Beaufort Fairmont. All Rights Reserved www.beaufortfairmont.com | 1.888.385.4851

mailto:sales%40beaufortfairmont.com?subject=
http://www.beaufortfairmont.com

